

JARY, 26TH , 2017 - MADRID

ig shift in Power

aping power systems of the future

os Marcos, Country Managing Director – ABB in Spain

g shift in power sruptive developments driving key changes in future grids

Batteries & photovoltaic

- Dramatic cost reduction to be continued
- Scalability of technologies
- · Consumer investment across market segments accelerating developments

g shift in power ements of the evolving grid

ower systems of the future id interconnection

Opportunities

Renewable integration across regions

- Fluctuations during the day
- Seasonal variations

Optimal use of reserve and peaking capacities

Diversification of electricity supply

Reduction of wholesale electricity price volatility

Strengthening grid operation in case of fault conditions

Increase capacity utilization factor of conventional generation

Challenges

Political factors

Economic framework

Technological capabilities

Coordinated operation (global harmonization standards, grid codes and operational practic

ower systems of the future id interconnection: Ultra High Voltage

World's most powerful UHVDC link

Chiangji-Guquan, China

1100kV DC

12000MW

>3000km

World's first multiterminal UHVDC link

North-East Agra, India

800kV DC

6000MW

>1700km

UHVAC transmission

Bina Substation, India 1200kV Circuit breaker & transformer

wer systems of the future crogrids and integration of renewables

Resilient and costeffective technology

Grid code compliant integration of wind & solar

Stabilizing weak grids

Microgrids acting as one controllable generator or load

Access to power in remote locations

Marble Bar, Australia

- PV* (300 kW)
- Diesel (1280 kW)
- Flywheel (500 kW)

Johannesburg, South Africa

- PV* (380 kW)
- Diesel (2x600 kW)
- Battery (1 MVA/380 kWh)

ower systems of the future nergy storage – a key element across the power value chain

wer systems of the future wer quality & demand management

stributed renewables Line voltage regulator

On-load tap-changers for distribution transformers

Extended control algorithms

Bulk renewables

Extremoz substation (BR): Static Var Compensator to connect wind energy (>1000 MW) to 230kV level

Demand esponse nanagement Frequency regulation through short term balancing of supply and demand

Smart home and building management

Electric vehicle (charging) infrastructure

ower systems of the future gitalization trend - Internet of Things, Services & People

Design nd build Optimized design through simulation

Faster configuration process

Lower lead times and higher quality manufacturing & assembly processes

Reduced on-site installation & commissioning

perate

Virtual power plants

Power generation forecasting & scheduling

Electricity market management

Ownership of assets and business model

/laintain

(Big) Data analysis - continuous learning

Remote access - communication

Monitoring, asset management & service aligned with expert knowledge

Workforce management

ower systems of the future – an evolutionary vision erconnected system of regional grids with fluctuating demain demains and generation patterns

Renewables will take major share in electrica power generation

- Disruptive elements
 - Photovoltaics
 - Batteries
 - Digitalization
- Distributed generation with changing consumer & producer patterns
- Distribution grid role changing
- Transmission backbone essential
- New business & operational models

ew opportunities & challenges require new ideas – evolutionary & revolutiona

Thank you

